Adhesion of tissue glues to different biological substrates

نویسندگان

  • A. I. Bochyńska
  • G. Hannink
  • P. Buma
چکیده

Tissue adhesives are attractive materials with potential to replace the use of sutures and staples in the repair of the injured tissues. The research field of tissue adhesives is dynamically growing, and different methods and tissue models are employed to evaluate the adhesive properties of newly developed materials. It is thus difficult to directly compare the properties of materials developed by researchers from different groups. Moreover, the extrapolation of results obtained using different tissue models to the targeted human tissues is often not possible. Therefore, the purpose of the current study was to evaluate the adhesive properties of the three different tissues adhesives: the clinically used Dermabond and fibrin glues, and the recently developed isocyanate-terminated three-armed adhesive block copolymers. Different biological substrates were used to assess their adhesion strengths: bovine Achilles tendon, meniscus tissue and skeletal muscle, chamois leather, and collagen films. Comparisons of the adhesive properties of the glues with these substrates were made. The obtained results were analyzed in terms of the chemistry and the adhesion mechanisms of the glues, and the composition and properties of the substrates like their hydrophilicity and surface morphology. We conclude that standardized procedures and models should be developed to allow direct comparison between the different (developed) tissue adhesives and to enable extrapolation of the results towards the targeted human tissues. Copyright © 2016 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of silica particles on adhesion strength of polyvinyl chloride coatings on metal substrates

The aim of this study was to improve the adhesion performance of plasticized polyvinyl chloride (PVC) coatings on steel substrates by using nanoparticles. For this purpose, the PVC plastisol with different concentration of nano-silica was prepared and applied to bond steel joints. The adhesive strength of the joints was determined by single-lap shear test. Moreover, mechanical properties and mi...

متن کامل

Human articular chondrocytes on macroporous gelatin microcarriers form structurally stable constructs with blood-derived biological glues in vitro.

Biodegradable macroporous gelatin microcarriers fixed with blood-derived biodegradable glue are proposed as a delivery system for human autologous chondrocytes. Cell-seeded microcarriers were embedded in four biological glues-recalcified citrated whole blood, recalcified citrated plasma with or without platelets, and a commercially available fibrin glue-and cultured in an in vitro model under s...

متن کامل

Cytotoxicity, blood compatibility and antimicrobial activity of two cyanoacrylate glues for surgical use.

The biocompatibility of two cyanoacrylate surgical glues (Glubran and Glubran 2), supplied by General Enterprise Marketing, Viareggio, Lucca, Italy, was tested through cytotoxicity and blood compatibility tests and the evaluation of antimicrobial activity. Cytotoxicity and blood compatibility tests were performed on the polymerized glues. Using the neutral red uptake test, the extracts from Glu...

متن کامل

Effect of Nanoclay Addition on the Properties of Polycaprolactone Nanocomposite Scaffolds Containing Adipose Derived Mesenchymal Stem Cells used in Soft Tissue Engineering

Tissue-engineering scaffolds provide biological and mechanical frameworks for cell adhesion, growth, and differentiation. Nanofibrous scaffolds mimic the native extracellular matrix (ECM) and play a significant role in formation and remodeling of tissues and/or organs . One way to mimic the desired properties of fibrous ECM is adding nanoparticles into the polymer matrix. In the current study, ...

متن کامل

Application of novel anodized titanium for enhanced recruitment of H9C2 cardiac myoblast

Objective(s):Anodized treated titanium surfaces, have been proposed as potential surfaces with better cell attachment capacities. We have investigated the adhesion and proliferation properties of H9C2 cardiac myoblasts on anodized treated titanium surface.  Materials and Methods: Surface topography and anodized tubules were examined by high-resolution scanning electron microscopy (SEM). Contro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016